Selasa, 30 September 2014

Article#349 - Kutipan Hari Ini

"If you're in favor of freedom of speech, that means you're in favor of freedom of speech precisely for views you despise."

~quoted from the words of Avram Noam Chomsky (b. 1928), American linguist, philosopher, political commentator and activist, best known as Professor Emeritus at Massachussetts Institute of Technology (MIT).
Quoted at Saturday, 20th September, 2014, 18:33 (UT+7).

image credit
Baca selengkapnya disini..

Article#348 - Memantapkan Langkah

Yang lalu biarlah menyebar.
Yang tersimpan biarlah mengakar.
Yang akan datang biarlah mendebar.
Yang di hadapan biarlah mengejar.



dicomot dari sini


dicomot dari sini
Memang, kata banyak orang, waktu serasa berlalu demikian cepat ketika dijalani dengan penuh rasa senang. Tetapi di sisi lain, waktu yang dijalani dengan banyak cerita baru, akan terasa berlalu lebih lama.
Sedikit pengaturan dosis yang terkendali, akan memastikan apa-apa yang kaujalani tak terasa berlalu demikian cepatnya, tetapi menyimpan banyak hal untuk diceritakan mulai sekarang, pekan depan, bulan depan, atau tahun-tahun yang akan datang.

.....
725 hari ke depan menjelang.
Saatnya kembali menghadap kenyataan.
Baca selengkapnya disini..

Senin, 29 September 2014

Article#347 - Kapan Ke Yogyakarta Lagi?

Pulang ke kotamu
Ada setangkup haru dalam rindu
Masih seperti dulu
Tiap sudut menyapaku bersahabat
Penuh selaksa makna

Terhanyut aku akan nostalgi
Saat kita sering luangkan waktu
Nikmati bersama
Suasana Jogja

Di persimpangan langkahku terhenti
Ramai kaki lima
Menjajakan sajian khas berselera
Orang duduk bersila

Musisi jalanan mulai beraksi
Seiring laraku kehilanganmu
Merintih sendiri
Ditelan deru kotamu

Walau kini kau telah tiada tak kembali
Namun kotamu hadirkan senyummu abadi
Ijinkanlah aku untuk selalu pulang lagi
Bila hati mulai sepi tanpa terobati

Musisi jalanan mulai beraksi
Seiring laraku kehilanganmu
Merintih sendiri
Ditelan deru kotamu

Walau kini kau telah tiada tak kembali (tak kembali)
Namun kotamu hadirkan senyummu abadi (senyummu yang nan abadi)
Ijinkanlah aku untuk selalu pulang lagi (untuk selalu pulang lagi)
Bila hati mulai sepi tanpa terobati

Walau kini kau telah tiada tak kembali (tak kembali)
Namun kotamu hadirkan senyummu abadi (senyummu yang nan abadi)
Ijinkanlah aku untuk selalu pulang lagi (untuk selalu pulang lagi)
Bila hati mulai sepi tanpa terobati

Walau kini kau telah tiada tak kembali (tak kembali)
Namun kotamu hadirkan senyummu abadi (senyummu yang nan abadi)

© Adi Adrian & Katon Bagaskara. 1990.

***
Diluncurkan sebagai lagu pembuka dalam album Kedua dari KLa Project, Yogyakarta kini menjadi salah satu karya KLa Project yang paling terkenal. Yogyakarta diaransemen dengan gaya KLa Project yang banyak mengusung unsur elektronika dalam musiknya. Keputusan yang terbilang berani, ketika musik meinstrim pada saat itu masih didominasi musik beraroma Melayu.
Agaknya, ciri musik KLa Project yang khas tersebut kemudian menjadi salah satu faktor yang mendorongnya tetap bertahan dalam belantika musik Indonesia. Yogyakarta sendiri kemudian meraih tiga label penghargaan BASF Award, penghargaan kelas atas dalam belantika musik Indonesia di era 80-an dan 90-an. Hal tersebut menahbiskan Yogyakarta sebagai salah satu lagu terbaik besutan KLa Project, dan hingga saat ini, termasuk salah satu yang paling dikenal khalayak ramai.


***
Aku pertama kali menyambangi Kota Pelajar pada tahun 2006. Saat itu, baru beberapa bulan berlalu sejak Merapi terbangun dan melelerkan batuan panas ke lerengnya. Aku yang kelewat bersemangat tentu saja memanfaatkan kesempatan untuk mengunjungi sejumput sisa dari kedahsyatan gulungan batuan panas yang kemudian mengubur lokasi tersebut. Sejenak kubayangkan, berapa jauh tanah di balik runtuhan andesit tersebut, juga seperti apa daerah tersebut terlihat sebelum terkubur di balik beberapa meter batuan vulkanik.

Setelah itu, tak sering kudapatkan kesempatan bertandang ke Yogyakarta. Kesempatan berikutnya ada di penghujung tahun 2011, beserta sekian banyak rekan seangkatan. Terlepas dari kegiatan merusuh bersama rekan-rekan, sudut kota Yogyakarta sendiri saat itu belum begitu menimbulkan kesan. Mungkin karena aku lupa memusatkan pikiran pada lingkungan kota.
Kesan yang unik akan Yogyakarta baru kurasakan pada Juni 2012 ketika aku mendapat kesempatan menjelajahi kota seorang diri. Hanya empat hari memang, ditambah satu kali lagi kunjungan di akhir Agustus yang cukup selama tiga hari. Tetapi, ada kesan yang menarik, yang entah kenapa sulit terkatakan. Kesan yang muncul dan menyergap kuat saat aku kembali lagi, seorang diri lagi, mendatangi Kota Pelajar ini.
Mungkin karena aku hampir menjadikan kota itu sebagai tempat tinggalku? Atau itu hanya produk delusi jiwa bodoh yang kurang berpikir?

Kapan? Ketika memungkinkan.
Mohon doakan.
Aku tak yakin. Yang jelas, terlepas dari berbagai kasus yang mendera Yogyakarta dalam beberapa waktu ke belakang, ada yang masih kusetujui dengan takzim saat mendengar pembicaraan tentang kota tersebut.
Mengutip kata-kata Anies Baswedan, setiap sudut di kota Jogja itu romantis. Punya daya magis.
Dan aku tak merasa akan bosan terjerat lagi.

Walau kini ku tiada dapat kembali 
Namun kotamu hadirkan senyummu abadi 
Izinkanlah aku datang ke Jogja lagi 
Bila hati mulai sepi tanpa terobati
Baca selengkapnya disini..

Minggu, 28 September 2014

Article#346 - Bulan Yang (Terlihat) Dekat

9 September 2014, 08:39 WIB (UT+7). 
Pada waktu ini, Bulan mencapai posisi terjauh dari Matahari, dilihat dari Bumi. Sebuah momen yang biasa kita kenal dengan istilah "Bulan purnama". Di sekitar momen tersebut, Bulan bersinar dengan porsi wajahnya yang paling mendekati bulat sempurna, dalam cerlang yang paling paripurna.
Purnama kali ini, selain menandai pengingat berlalunya tengah bulan bagi umat Islam yang sedang menempuh bulan Dzulqa'idah, juga dinikmati oleh banyak orang di penjuru dunia karena posisi Bulan yang tergolong cukup dekat ke Bumi di masa purnamanya. Bulan pada posisi ini, yang kemudian populer dengan julukan 
supermoon, berhasil menarik perhatian ekstra bagi pecinta angkasa untuk sejenak menyintas langit petang, hingga fajar menjelang. Semua itu hanya demi menangkap citraan Bulan yang tampak (sedikit) lebih cerlang dari biasanya. Sayangnya, tentu saja, julukan 'super' bagi Bulan di saat tersebut tidak se-'super' kedengarannya, terlepas apakah para astronom akan cukup tega untuk membuyarkan animo masyarakat dalam mengamati Bulan. Bagi penulis, menilik istilah supermoon yang memperdayakan dan sekaligus memberi harapan palsu (?) istilah "purnama perigee" yang lebih ilmiah akan dipakai di tulisan ini.
(Untuk penjelasan lebih lanjut mengenai seluk beluk purnama perigeesila kunjungi laman ini)

Kenampakan Bulan yang sedikit meredup dibanding purnama sebulan sebelumnya, seolah ingin memberitahukan, bahwa sudah waktunya bagi kalender 1435 Hijriah untuk bersiap tutup buku. Sekitar dua pekan ke depan, bulan pamungkas pada kalender, Zulhijjah, akan menemani dengan sederetan kegiatan massal di dalamnya. Baik kegiatan keagamaan seperti haji dan Idul Adha, atau kegiatan umum seperti mengamati gerhana Bulan yang diperhitungkan akan terjadi pada 8 Oktober petang waktu Indonesia.
Penulis pun tak mau kalah, dan menyuguhkan foto-foto hasil jepretan orang di berbagai daerah dunia dalam kegiatan massal mengabadikan momen purnama perigee, malam 8-9 September lalu. Meskipun, mungkin penulis perlu mengingatkan kepada para pembaca sekalian, bahwa kenampakan Bulan di foto-foto di bawah terlihat besar hanya karena teknik fotografi yang digunakan dalam memotret citra Bulan. Bukan Bulan yang terlihat sedemikian besar; justru objek di sekitar Bulan lah yang terlihat demikian kecil-kecil.

Sebagai penutup dari serial purnama perigee tahun ini, penulis akan menggelar lebih banyak gambar dibanding dua seri sebelumnya. Selamat menikmati.
(Jika tertarik dengan koleksi foto-foto Bulan, sila kunjungi juga laman ini)

Tambahan: Melewatkan ketiga momen purnama perigee sebelumnya? Hadeuh, sayang sekali, jatah purnama perigee untuk 2014 sudah habis. Sebagai gantinya, persiapkan diri menyaksikan gerhana 8 Oktober nanti!


Purnama perigee, dipotret dari wilayah New Jersey, AS.
(Michael la Monaco/SPACE.com)
Purnama perigee, dipotret dari balik London Eye, London, Inggris.
(Peter Macdiarmid/Getty Images)
Purnama perigee, dipotret dari Mount Eden, Auckland, Selandia Baru.
(Simon Runting/Rex Features)
Purnama perigee di balik seekor domba, dipotret di Swaledale,
North Yorkshire, Inggris.
(Paul Kingston/NNP)
Purnama perigee, dipotret dari wilayah Grand Forks, North Dakota, AS.
(Jason Go/SPACE.com)
Purnama perigee, dipotret dari wilayah Kuwait.
(Ali Basil/BBC)
Purnama perigee, dipotret dari Mount Maunganui, Selandia Baru.
(Dermott McCaughan/BBC)
Purnama perigee di balik labah-labah, dalam gambar komposit.
(brianwhoiscalledbrian/Flickr)
Purnama perigee yang hendak terbenam, sebagaimana dipotret dari
New South Wales, Australia.
(Wes Schulstad/Alien Shores)
Purnama perigee di balik awan.
(Héctor Barrios/Universe Today)
Purnama perigee, dipotret dari wilayah Mason, Ohio, AS.
(Jun Lao/SPACE.com)
Purnama perigee, dipotret dari balik lampu-lampu Festival Lentera
di Victoria Park, Hong Kong.
(Bobby Yip/Reuters)
Purnama perigee, dipotret dari balik Jembatan Bosphorus,
Istanbul, Turki.
(Murad Sezer/Reuters)



















Jika mata kalian telah berkelana sampai ke kalimat ini, berarti sudah waktunya tulisan ini undur diri. Jangan lupa, meski purnama perigee sudah habis untuk tahun ini, masih ada gerhana bulan total pada 8 Oktober mendatang. Apalagi, gerhana bulan total lebih seru untuk dinikmati daripada purnama perigee yang tak begitu kentara
Mungkin cukuplah demikian. Sampai jumpa di lain kesempatan!


Jika ingin melihat gambar-gambar purnama perigee lebih lanjut, sila kunjungi laman berikut.
http://www.universetoday.com/114408/awesome-astrophotos-caught-in-the-web-of-the-supermoon/
http://www.space.com/27084-harvest-full-moon-photos-september-2014.html
http://www.independent.co.uk/news/science/harvest-moon-in-pictures-2014s-last-supermoon-photographed-around-the-world-9722965.html
http://www.bbc.com/news/in-pictures-29137217
http://www.telegraph.co.uk/earth/earthpicturegalleries/9250252/Supermoon-Amazing-images-of-the-the-biggest-and-brightest-full-moon-of-the-year.html
Baca selengkapnya disini..

Article#345 - Mengenali Geometri Bola

Rusdi meletakkan koper besarnya di samping lemari kamar.
Kamar itu masih bersih, sebersih apa yang bisa diharapkan dari sebuah hotel bintang empat. Rusdi memandang seisi kamar, menelisik dengan teliti tiap detail ruang yang akan menjadi tempat tinggalnya di negeri Ginseng untuk beberapa hari ke depan. Saat itulah Rusdi memperhatikan pemandangan di balik jendela.
Langit mulai gelap. Matahari tentulah sudah terbenam beberapa waktu lalu.
Rusdi segera beranjak ke kamar mandi, mengambil air wudu, dan bersiap melaksanakan salat Maghrib. Secara refleks, Rusdi bersiap menghadapkan diri ke arah kiblat.
Tunggu. Ke mana arah kiblat?
Rusdi mencoba mencari tahu dengan membuka buku agendanya. Di sana, tercantum peta dunia, dan menurut peta tersebut, negara Arab Saudi terletak ada di arah barat daya negara Korea Selatan. Maka, Rusdi mengarahkan sajadahnya ke arah barat daya.

Sayangnya, Rusdi tak sepenuhnya yakin. Apa benar ke arah sini, atau geser ke kiri sedikit? Ke kanan sedikit?
Beberapa saat Rusdi berpikir di atas sajadah, dan tak lama, ia menyerah. Rusdi segera meraih ponsel, dan membuka aplikasi penunjuk arah kiblat. Aplikasi itu dengan sigap menunjukkan arah kiblat untuk kota Incheon, kota tempat Rusdi tinggal. Panah yang bergoyang di balik layar ponsel itu menunjukkan satu arah. Arah yang membuat Rusdi bingung.
Barat laut?”



Sebuah sphère armillaire, sebuah model bola langit dengan berbagai
kerangka lingkaran di bagian luar. Kerangka-kerangka tersebut mewakili
lintang dan bujur bola langit, serta bidang ekliptika (bidang orbit Bumi).
Sphère armillaire di gambar ini adalah karya Antonio Santucci pada tahun 1595,
yang dipajang di Museo Galileo (Museum Galileo), Firenze/Florence, Italia.
sumber


Menandingi Bapak Geometri

Geometri, bagi sebagian dari kita, termasuk ke dalam daftar panjang materi yang diakrabi dengan setengah hati sepanjang tahun-tahun di jenjang pendidikan. Waktu-waktu mempelajari geometri menjadi saat dimana sederetan rumus menjemukan yang biasa bersemayam di buku matematika, digantikan oleh berbagai gambar aneka bentuk. Gambar-gambar tersebut seolah tampak sebagai penyegaran, sampai kau memergoki ada lagi deretan rumus yang menemani semuanya.
Ya, geometri mungkin terdengar 'mengerikan' bagi sebagian kita. Tetapi, mungkin yang lebih 'mengerikan' adalah orang yang demikian menikmatinya, cukup dalam hingga ia menyusun konsep dasar semua bangun di sekitar kita dalam satu kesatuan.
(Di bagian selanjutnya, kesatuan sejenis itu akan disebut konsep geometri.)

Publikasi ilmiah dalam bidang geometri sudah ada sejak abad keenam sebelum Masehi, di mana figur-figur cendekiawan Yunani Kuno seperti Thales mendalami perhitungan panjang, luas atau volume berbagai bentuk bangun datar atau ruang. Meskipun demikian, geometri masih terbatas pada pengunaan praktikal, hingga abad ketiga sebelum Masehi.
Di abad itu, seorang cendekiawan bernama Euklides memutuskan untuk menyusun sebuah konsep geometri. Konsep geometri yang disusun oleh Euklides ini merangkum berbagai sifat dasar dari berbagai bangun datar dan ruang yang biasa kita jumpai dalam kehidupan sehari-hari, dalam beberapa gagasan dasar, atau aksioma. Dengan menyatakan aksioma-aksioma tersebut, Euklides menunjukkan bahwa konsep geometri, beserta bermacam ciri khas dari bangun-bangun yang terbentuk di dalamnya, dapat disatukan dalam satu kerangka logika sederhana.

Aksioma-aksioma (atau gagasan-gagasan dasar) yang digunakan Euklides dalam mendasari konsep geometrinya adalah sebagai berikut.
  1. Setiap dua titik sembarang dapat dihubungkan oleh satu garis lurus.
  2. Setiap garis lurus sembarang dapat diperpanjang sampai panjang tak hingga.
  3. Setiap garis lurus sembarang dapat mewakili jari-jari dari sebuah lingkaran, dengan salah satu ujung garis menjadi titik pusat.
  4. Setiap sudut siku-siku memiliki besar yang sama, 90°.
  5. Jika dua buah garis sembarang memotong sebuah garis lain pada sudut yang berbeda, perpanjangan kedua garis itu akan berpotongan.
Berdiri dengan aksioma-aksioma di atas sebagai fondasi, konsep geometri yang diperkenalkan Euklides ini kemudian menjadi topik utama dalam ilmu geometri yang umum dipakai orang sehari-hari,
Berhubung saat itu orang belum mengenali tipe konsep geometri yang lain, saat itu penisbatan nama Euklides bagi konsep geometri terkait tidak diperlukan. Sehingga, ketika orang-orang di masa lampau membicarakan geometri, baik dari masa kerajaan Romawi hingga masa Renaisans, yang mereka maksud hampir pasti adalah konsep geometri Euklides. Lagipula, bagi mereka saat itu, hanya konsep geometri Euklides lah yang bisa mereka bayangkan.

Menjelajahi Muka Bola

Semua berubah ketika orang mulai mendalami dunia pelayaran di Zaman Penjelajahan.
Zaman Penjelajahan dimulai sejak berkembangnya Abad Renaisans sekitar abad ke-14 Masehi, di mana bangsa-bangsa Eropa makin kerap mengirimkan tim ekspedisi untuk menjelajahi lautan dan menemukan daerah baru. Beberapa pihak meyakini bahwa pemicu utama meningkatnya penjelajahan bangsa Eropa adalah penaklukan Konstantinopel (yang kini disebut Istanbul) oleh Kerajaan Turki Utsmani di bawah pimpinan Sultan Mehmet II. Penaklukan ini mengakibatkan putusnya jalur dagang dari Eropa ke Asia Timur, yang biasa disebut Jalur Sutra. Terputusnya Jalur Sutra diyakini menjadi pukulan besar bagi bangsa-bangsa Eropa dalam memperoleh berbagai rempah dan komoditas lain yang langka di kampung halaman mereka. Dapat dibayangkan jika kemudian bangsa-bangsa Eropa memutuskan untuk memutar melalui barat (Samudra Atlantik) untuk menggapai kembali akses menuju mitra bisnis mereka di Asia. Di sisi lain, keputusan bangsa Eropa untuk menjelajahi samudra dapat juga digunakan untuk mencari kemungkinan adanya komoditas menguntungkan, yang hingga saat itu, masih aman dari tangan-tangan mereka.

Pada Zaman Penjelajahan, pengetahuan akan bentuk Bumi yang (relatif) bulat telah cukup diterima oleh banyak pihak, dan makin dikukuhkan berkat ekspedisi Magellan yang berhasil mengelilingi Bumi pada paro awal abad ke-16. Untuk kemudahan tim ekspedisi dalam mencapai tujuan, berbagai ilmuwan dari tiap bangsa berusaha mengembangkan kemampuan navigasi mereka.  Peta-peta untuk navigasi para pelaut mulai dikembangkan, dalam usaha meratakan lengkung muka Bumi menjadi bidang datar yang dapat dicitrakan pada selembar kertas. Pada saat itulah, orang mulai mendapati adanya perbedaan antara proyeksi pada peta dengan kenyataan sebenarnya, yang berakar pada kelengkungan muka Bumi. Alhasil, metode paling baik untuk menerapkan ilmu navigasi di muka Bumi adalah dengan memperlakukan permukaan Bumi secara apa adanya. Dengan kata lain, menerapkan ilmu navigasi pada permukaan sebuah bola.

Kendala pertama dalam menyusun dasar-dasar navigasi dengan permukaan bola adalah adanya aksioma dari konsep geometri Euklides yang tidak berlaku pada permukaan bola.
Pada permukaan sebuah bola, panjang suatu tarikan garis terbatas, bergantung pada ukuran bola tempatnya berada.
Dua tarikan garis yang memotong satu tarikan garis lain dengan sudut yang sama, ketika digambarkan pada permukaan bola, ternyata bisa berpotongan ketika berada di permukaan sebuah bola. Padahal, pada konsep geometri Euklides, kedua garis terkait tidak akan berpotongan

Berdasarkan hal-hal tersebut, konsep geometri pada permukaan bola kemudian perlu dibedakan dengan konsep geometri Euklides. Perhatian para ahli navigasi kemudian kembali pada konsep geometri bola; konsep yang sebelumnya cenderung terbatas pada lingkup teori. Inilah salah satu contoh dari konsep geometri non-Euklides, yang baru diterapkan secara luas dalam Zaman Penjelajahan.

Seperti apa konsep geometri bola ini?

Sebagaimana tersirat di penjabaran sebelumnya, konsep geometri bola berkutat dengan bangun bola, khususnya di permukaan bola. Pada konsep geometri bola, ‘titik’ didefinisikan sebagaimana biasa, tetapi ‘garis’ tidak cocok lagi digunakan, mengingat permukaan bola yang melengkung. Analog bagi ‘garis’ pada geometri bola adalah busur, yang didefinisikan sebagai jarak tempuh terdekat antara dua titik di permukaan bola - juga dikenal dengan istilah busur geodesik – atau garis geodesik.

Ilustrasi sederhana sebuah kulit bola. Turut ditandai juga posisi lingkaran
besar (great circle), lingkaran-lingkaran kecil (small circles) dan kutub (pole).
Gambar diadaptasi dari laman ini.
Jika kamu cukup iseng untuk meneruskan perjalanan busur baru tersebut, ia akan terus memanjang mengelilingi bola, hingga kembali menemui titik asalnya. Hasilnya adalah sebuah lingkaran, yang membagi bola menjadi dua bagian dengan ukuran tepat sama besar. Lingkaran ini kemudian dinamai lingkaran besar, karena lingkaran tersebut adalah lingkaran yang paling besar yang mungkin dibentuk pada permukaan sebuah bola. Setiap lingkaran yang lebih kecil dari lingkaran besar, akan diberi nama yang demikian kreatif, lingkaran kecil.
Ketika kamu memotong lingkaran besar menjadi potongan kecil, potongan itu disebut busur lingkaran besar. Pada hakikatnya, setiap busur geodesik, sesuai definisinya pada konsep geometri bola, merupakan busur lingkaran besar.
Tiap lingkaran besar memiliki dua titik yang posisinya paling jauh dari lingkaran terkait, kedua titik ini disebut kutub. Sebagai contoh, jika kita membicarakan garis khatulistiwa Bumi sebagai lingkaran besar, maka kedua kutub yang dimaksud di sini adalah kutub utara dan kutub selatan geografis Bumi.

Berbedanya geometri bola dengan geometri Euklides menyebabkan perlunya menyusun rumusan-rumusan baru dalam melakukan perhitungan pada permukaan bola. Perhitungan yang paling umum digunakan dengan memanfaakan sebuah bangun bernama segitiga bola. Segitiga bola hampir sama dengan segitiga “normal”, dalam pengertian ia terdiri dari tiga titik sudut dan tiga busur yang menghubungkan ketiga titik. Beda antara keduanya, sebagaimana tersirat dari namanya, segitiga bola terletak di permukaan bola.

Mengapa yang dipilih segitiga? Karena segitiga adalah bangun dua dimensi yang paling sederhana, sehingga mudah dimanfaatkan dalam perhitungan. Perhitungan yang jamak dipakai sendiri disebut trigonometri bola, yang pada dasarnya hanya berbeda dengan trigomonetri “normal” pada jenis geometri di mana ia diterapkan.

Sampai saat ini, terkait geometri bola dan segitiga bola, ada beberapa informasi yang telah didapat. Informasi tersebut adalah:

  • Pengertian segitiga bola adalah bangun yang terbentuk dari tiga busur.
  • Setiap busur pada permukaan bola adalah busur lingkaran besar.
  • Busur lingkaran besar adalah potongan dari sebuah lingkaran besar.

Ketiga informasi ini dapat digabungkan menjadi definisi segitiga bola yang singkat dan padat, seperti berikut.
Segitiga bola adalah bangun pada permukaan bola yang terbentuk dari perpotongan tiga lingkaran besar.
Definisi ini secara tak langsung menyiratkan bahwa setiap busur yang menghubungkan dua dari tiga titik sudut segitiga bola adalah busur geodesik.
Beranjak dari pemahaman ini, mungkin ada yang merasa sudah siap untuk memanfaatkan segitiga bola. Terutama mereka yang telah memiliki dasar baik dalam mempelajari geometri Euklides. Sayangnya, tetap saja, geometri bola adalah geometri non-Euklides. Sehingga, berbagai macam rumusan yang biasa kita pakai ketika memainkan bangun di geometri Euklides tidak serta-merta dapat digunakan pada geometri bola. (Penjelasan lebih mendetail mengenai rumusan-rumusan terkait, yang adalah trigonometri bola, dapat dibaca di laman berikut.)

Ilustrasi perbandingan antara segitiga Euklidean
(inset, garis kuning) dengan segitiga bola.
Perhatikan bahwa jumlah besar sudut segitiga bola
melebihi 180°.
sumber
Misalkan segitiga bola yang telah dibahas sebelumnya diambil sebagai contoh. Jika seseorang menggambar segitiga menurut konsep geometri Euklides, segitiga yang ia dapat adalah segitiga ‘datar’ Tetapi, jika seseorang menggambar segitiga pada permukaan bola, segitiga yang ia dapat adalah segitiga yang ‘melengkung’.
Perbedaan kelengkungan ini kemudian membawa kita kepada salah satu pembeda utama antara segitiga ‘normal’ dengan segitiga bola: Jumlah besar ketiga sudut segitiga bola lebih besar dari 180°.

Makin melengkung sebuah segitiga bola, atau makin luas ia menutupi permukaan bola, makin besar pula jumlah besar sudutnya, menjauhi 180° hingga nilai maksimum besar sudut sebesar 540°. Begitu pula sebaliknya, semakin mendatar segitiga bola yang dimaksud, ia akan menutupi luas yang lebih kecil, dan jumlah sudutnya pun akan semakin dekat dengan 180°. Dalam perhitungan di dunia nyata, sebuah segitiga bola bahkan mungkin saja menjadi cukup kecil sehingga ia secara praktis menjadi sebuah segitiga Euklidean, alias ‘datar’. Tak jauh beda dengan manusia yang cenderung memahami permukaan Bumi sebagai hamparan tanah datar, akibat ukuran Bumi yang demikian besar ketika dibandingkan dengan manusia.

Geometri Bola Buat Apa

Baiklah, kita sudah diperkenalkan dengan sebuah konsep geometri yang relatif baru, konsep geometri bola, beserta sedikit penjelasan tenang bangun segitiga bola. Tak pelak, sebagian dari kita mungkin akan bertanya-tanya, geometri bola buat apa?

Kegunaan konsep geometri bola, yang paling utama, tentunya adalah penerapannya pada permukaan sebuah bola. Pada bola-bola yang biasa kita temui dalam kehidupan sehari-hari, entah itu bola sepak, bola basket, atau bola tenis, seringkali kita tak memfokuskan perhatian hanya pada permukaannya, tetapi pada keseluruhan bola.
Sebenarnya, hampir tak ada bola yang permukaannya diperhatikan sedemikian rupa sampai perlu dihitung-hitung menggunakan perhitungan geometri bola. Setidaknya hanya ada dua bola yang bernasib demikian: bola langit dan bola bumi.

Kebanyakan dari para pembaca sekalian mungkin sudah familiar dengan bola bumi, baik Bumi sebagai benda langit berbentuk hampir bola, atau mungkin miniatur bola bumi di kelas yang kerap disebut globe.
Tapi, bola langit?

Bola langit adalah salah satu sisa paham geosentris yang masih lestari dipakai hingga masa kini. Meskipun paham geosentrik sendiri sudah lama padam sejak ditenggelamkan oleh Copernicus dan rekan ilmuwan lainnya dengan paham heliosentrik, astronom masa kini masih mendapati bola langit sebagai salah satu konsep geosentris yang masih dapat diterapkan dalam pengamatan astronomi.
Konsep bola langit berawal dari pandangan orang zaman dahulu, yang menganggap gemintang di langit selayaknya kilau hiasan langit malam. Gemintang yang demikian banyak, namun tak terjangkau.
Ilustrasi yang menggambarkan konsep bola langit. Seluruh bintang
(bintik kuning) digambarkan berada pada kulit bola , dengan Bumi berada
tepat di tengah bola. sumber
Dari pemahaman akan tak terjangkaunya bintang, mungkin bisa saja kita berimajinasi bahwa mereka memutuskan untuk menganggap seluruh bintang di langit memiliki jarak yang sama dari mata individu yang sedang mengamati mereka. Seluruh bintang ini kemudian bisa kita anggap “menempel” pada suatu “permukaan” yang jaraknya tak terhingga dari mata para pengamat. Ketika kamu menyusun bintang-bintang yang terletak di sembarang arah pada jarak yang sama dari suatu titik, bangun ruang apakah yang akan kamu dapati? Sebuah bola. Ketika seisi langit yang kamu lihat kemudian ditempelkan pada kulit bola, maka bola apa yang akan kamu dapati? Bola yang bernama bola langit.

Sebagaimana tertera pada gambar, dalam satu waktu di satu tempat, kita dapat melihat hingga separuh dari 'bola langit' dalam satu waktu. Tetapi, paruh bagian mana dari bola langit yang dapat kamu lihat, itu bergantung pada waktu dan lokasi dirimu mengamati langit.
Berhubung Bumi adalah benda langit yang cukup aktif bergerak, baik dalam gerak rotasi (gerak berputar mengelilingi poros kutub Bumi) atau gerak revolusi (gerak mengelilingi Matahari), seluruh benda langit akan terlihat bergerak.
Gerak ini disebut gerak semu, yang berarti gerak yang dimaksud bukanlah gerak yang sebenarnya dari tiap-tiap benda langit. Gerak semu secara umum ada dua, yaitu gerak semu harian yang dipengaruhi gerak rotasi, maupun gerak semu tahunan yang dipengaruhi gerak revolusi.

Dalam penerapan, geometri bola pada bola langit dan bola bumi secara umum dapat dibilang serupa. Astronom menggunakan perhitungan geometri bola untuk memetakan posisi benda langit, baik bintang (termasuk Matahari), planet, komet, asteroid ataupun benda langit lainnya. Sebagaimana para kartograf (pembuat peta) akan bersemangat memetakan pulau atau kenampakan alam lain yang baru mereka temukan di peta, astronom akan senantiasa bersemangat memetakan objek yang mereka amati pada peta bintang.

Beberapa dari objek di langit malam, seperti planet, Bulan, dan Matahari, akan teramati bergerak cukup cepat di bola langit (gerak yang dimaksud adalah gerak semu). Sebagai konsekuensi dari gerak semu tersebut, perubahan posisi benda-benda termaksud perlu diamati dengan seksama dari hari ke hari. Begitu pula moda transportasi yang menyusuri gelombang lautan dan gemulung awan, mereka membutuhkan panduan arah yang jelas supaya tak tersesat akibat tak adanya daratan sebagai acuan. Dalam memandu kendaraan (atau memata-matai planet) yang berkelana itulah, trigonometri bola mengambil peran mengantarkan para penumpang (atau astronom) hingga sampai ke tujuan.

Kemudian, perhitungan geometri bola dalam astronomi menjadi sangat berperan ketika seorang astronom ingin menghubungkan posisi suatu objek, katakanlah bintang, di langit malam, dengan posisi objek dari sudut pandang sang astronom. Trigonometri bola juga menjadi diperlukan ketika seseorang ingin mengarahkan dirinya pada lokasi yang ia inginkan. Misalnya mencari arah kiblat untuk menunaikan salat.
Karena objek Tata Surya seperti Matahari, Bulan, maupun planet-planet, bergerak relatif cepat, perhitungan yang seksama dengan mengandalkan trigonometri bola akan sangat diperlukan dalam mengamati sebuah benda langit di waktu tertentu. Begitu pula seseorang yang hendak melaksanakan salat setelah menempuh perjalanan panjang, ia akan membutuhkan trigonometri bola (baik secara manual atau memanfaatkan aplikasi) untuk menentukan arah kiblat yang cukup akurat.

Akhir kata, kira-kira demikianlah kegunaan dari apa yang disebut geometri bola. Meskipun memang kurang familiar di khalayak ramai, sebenarnya geometri bola telah memegang peranan penting dalam kehidupan manusia saat ini.
Semoga tulisan ini bermanfaat bagi semua pembaca!

Ingin tahu lebih lanjut? Sila kunjungi laman berikut:
http://www.themathpage.com/abookI/intro-geo.htm
http://www.quora.com/History/What-caused-the-Age-of-Discovery-in-the-1500s
http://mathcs.slu.edu/history-of-math/index.php/Introduction_to_Spherical_Geometry
http://www.oswego.edu/~kanbur/a100/lecture2.html
http://www.rwgrayprojects.com/rbfnotes/trig/strig/strig.html
http://mathworld.wolfram.com/SphericalTrigonometry.html
http://www.erikdeman.de/html/sail042e.htm

Tambahan:
Masih bingung dengan arah kiblat Rusdi pada bagian pembuka? 
Jarak terdekat antara dua titik pada permukaan bola selalu diwakili oleh garis geodesik. yang tidak sama dengan garis lurus pada permukaan peta.


Cuplikan layar dari laman sunearthtools.com, menyertakan koordinat
kota Incheon pada posisi A, dan kota Mekah pada posisi B.
Inset di sebelah kiri menggambarkan perbedaan arah busur lingkaran besar
dan garis loksodrom, yang mewakili arah berbeda dari kota Incheon.
Klik pada gambar untuk memperbesar.
Gambar di samping mewakili busur lingkaran besar (biru) dan garis lurus pada peta/loksodrom (kuning). Pada peta, kurva kuning akan terlihat lebih pendek daripada kurva biru, yang berarti jaraknya terlihat lebih pendek. Akan tetapi, karena Bumi berbentuk hampir bola, dalam kenyataannya kurva biru lebih pendek dari kurva kuning.

Arah kiblat diwakili oleh jarak terdekat dari lokasi pelaku salat ke kota Mekah, sehingga kurva biru lah yang digunakan sebagai arah kiblat, alih-alih kurva kuning.
Baca selengkapnya disini..